Sidebar Menu

Lecture "Signals and Systems I"

 

Basic Information

 
 
Lecture overview  
  Lecturers:   Gerhard Schmidt (lecture), Patricia Piepjohn and  Johannes Hoffmann (exercise)  
  Room:   C-SR-I  
  Language:   German  
  Target group:   Students in electrical engineering and computer engineering  
  Prerequisites:   Mathematics for engineers I, II & III; Foundations in electrical engineering I & II  
  Contents:  

This course teaches basics in systems theory for electrical engineering and information technology. This basic course is restricted to continuous and deterministic signals and systems.

Topic overview:

  • Basic classes of signals and systems
    • Introduction and notation
    • Signals
    • Systems
  • Signals
    • Elementary signals
    • Reaction of linear systems on elementary signals
    • Signal decomposition into elementary signals
  • Spectral representations of deterministic signals
    • Fourier series, Discrete Fourier Transform (DFT)
    • Fourier transform
    • Laplace and z transform
  • Linear systems
    • Reaction on elementary signals
    • Reaction on arbitrary signals
    • Quantities for describing linear systems and their relations
    • Stability of linear systems
    • Rational transfer-functions
  • Modulation
    • Basics
    • Sampling theorem
 
  References:   H.W. Schüßler: Netzwerke, Signale und Systeme II: Theorie kontinuierlicher und diskreter Signale und Systeme, Springer, 1991
H.D. Lüke: Signalübertragung, Springer, 1995
 

 

News

04.04.2021 - We will start the lecture during the first exercise: 19.04.2021 at 14:30 h. Please use the zoom link of the lecture (provided via OLAT) for joining.

 

Lecture Slides

 
 
Link   Content  
    Slides of the lecture "Introduction"
(details of the lecture, notation, signals, systems)
 
    Slides of the lecture "Signals"
(basic signals, reaction on basic signals, signal decomposition)
 
    Slides of the lecture "Spectral Representations - Part 1"
(Fourier series, Discrete Fourier Transform)
 
    Slides of the lecture "Spectral Representations - Part 2"
(Fourier Transform)
 
    Slides of the lecture "Spectral Representations - Part 3"
(Laplace and z-transform)
 
    Slides of the lecture "Linear Systems"
(Basics and relations between different system descriptions)
 
    Slides of the lecture "Modulation"
(Basics and linear modulation schemes)
 

 

Lecture Videos

 
 
Video   Content   Please watch until  
   

Introduction - part 1 of 3

 

22.04.2021 - 10:00 h

 
   

Introduction - part 2 of 3

 

22.04.2021 - 10:00 h

 
   

Introduction - part 3 of 3

 

22.04.2021 - 10:00 h

 
   

Signals - part 1 of 3

 

29.04.2021 - 10:00 h

 
   

Signals - part 2 of 3

 

29.04.2021 - 10:00 h

 
   

Signals - part 3 of 3

 

06.05.2021 - 10:00 h

 
   

Spectra, Fouier series and DFT - part 1 of 3

 

06.05.2021 - 10:00 h

 
   

Spectra, Fouier series and DFT - part 2 of 3

 

06.05.2021 - 10:00 h

 
   

Spectra, Fouier series and DFT - part 3 of 3

 

20.05.2021 - 10:00 h

 
   

Spectra, Fouier transformations - part 1 of 3

 

20.05.2021 - 10:00 h

 
   

Spectra, Fouier transformations - part 2 of 3

 

20.05.2021 - 10:00 h

 
   

Spectra, Fouier transformations - part 3 of 3

 

27.05.2021 - 10:00 h

 
   

Spectra, z and Laplace transform - part 1 of 3

 

27.05.2021 - 10:00 h

 
   

Spectra, z and Laplace transform - part 2 of 3

 

27.05.2021 - 10:00 h

 
   

Spectra, z and Laplace transform - part 3 of 3

 

03.06.2021 - 10:00 h

 
   

Linear systems - part 1 of 4

 

10.06.2021 - 10:00 h

 
   

Linear systems - part 2 of 4

 

10.06.2021 - 10:00 h

 
   

Linear systems - part 3 of 4

 

17.06.2021 - 10:00 h

 
   

Linear systems - part 4 of 4

 

24.06.2021 - 10:00 h

 
   

Modulation - part 1 of 1

 

01.07.2021 - 10:00 h

 

 

Exercises

 
 
Link   Content   Please try until  
    Please prepare exercises 1 and 2.   26.04.2021 - 14:30 h  
      Please prepare exercises 5, 6 and 7.   03.05.2021 - 14:30 h  
      Please prepare exercises 9 and 11.   10.05.2021 - 14:30 h  
      Please prepare exercises 12, 14 and 15   31.05.2021 - 14:30 h  
      Please prepare exercises 16 and 18   07.06.2021 - 14:30 h  
      Please prepare exercises 19 and 21   14.06.2021 - 14:30 h  
      Please prepare exercises 23 and 25   21.06.2021 - 14:30 h  
      Please prepare exercises 27 and 28   28.06.2021 - 14:30 h  
      Please prepare exercises 30 and 31   05.07.2021 - 14:30 h  

 

Solutions for the Exercises

 
 
Link   Content  
    Solutions to all exercises.  

 

Exercise Videos

 
 
Video   Content   Please watch until  
   

Exercise 1

 

26.04.2021 - 14:30 h

 
   

Exercise 2

 

26.04.2021 - 14:30 h

 
   

Exercise 3

 

Optional exercise

 
   

Exercise 4

 

Optional exercise

 
   

Exercise 5

 

03.05.2021 - 14:30 h

 
   

Exercise 6

 

03.05.2021 - 14:30 h

 
   

Exercise 7

 

03.05.2021 - 14:30 h

 
   

Exercise 8

 

Optional exercise

 
   

Exercise 9

 

10.05.2021 - 14:30 h

 
   

Exercise 10

 

Optional exercise

 
   

Exercise 11

 

10.05.2021 - 14:30 h

 
   

Exercise 12

 

31.05.2021 - 14:30 h

 
   

Exercise 13

 

Optional exercise

 
   

Exercise 14

 

31.05.2021 - 14:30 h

 
   

Exercise 15

 

31.05.2021 - 14:30 h

 
   

Exercise 16

 

07.06.2021 - 14:30 h

 
   

Exercise 18

 

07.06.2021 - 14:30 h

 
   

Exercise 19

 

14.06.2021 - 14:30 h

 
   

Exercise 21

 

14.06.2021 - 14:30 h

 
   

Exercise 23

 

21.06.2021 - 14:30 h

 
   

Exercise 25

 

21.06.2021 - 14:30 h

 
   

Exercise 27

 

28.06.2021 - 14:30 h

 
   

Exercise 28

 

28.06.2021 - 14:30 h

 
   

Exercise 30

 

05.07.2021 - 14:30 h

 
   

Exercise 31

 

05.07.2021 - 14:30 h

 
   

Exam preparation

 

 

 

 

Matlab Theory Examples

How to use Matlab as a student:

  1. Campus-wide license (recommended)
  2. Windows Remote Server
  Link   Content   Date  
    Matlab intro   17.05.2021  
    System properties demo   26.04.2021  
    Periodicity demo   03.05.2021  
    Fourier series demo   10.05.2021  
    DFT demo   10.05.2021  
    Fourier demo (Try at home)   17.05.2021  
    Fourier demo   07.06.2021  
    Convolution demo   14.06.2021  

 

Evaluation

 
 
Link   Content   Link   Content  
    Current evaluation     Completed evaluations  

 

Formulary

A formulary can be found below:

 
 
Link   Content  
    Formulary  

 

Previous Exams

 
 
Link   Content   Link   Content  
    Exam of the winter term 2020/2021     Corresponding solution  
    Exam of the summer term 2020     Corresponding solution  
    Exam of the winter term 2019/2020     Corresponding solution  
    Exam of the summer term 2019     Corresponding solution  
    Exam of the winter term 2018/2019     Corresponding solution