Advanced Signals and Systems - Indealized Linear, Shift-invariant Systems


24. Idealized linear, shift-invariant systems.


Given an one-sided ideal bandpass filter with center-frequency \(\Omega_m\), bandwidth \(2\cdot \Delta\Omega\) and linear phase \(\Omega n_0\).

  1. Determine the frequency response \(H^{(1)}(e^{j{\Omega}})\).
  2. Find the impulse response \(h_0^{(1)}(n)\).
  3. Find the frequency response \(H^{(2)}(e^{j\Omega})\) of the corresponding two-sided bandpass filter.
  4. What is the impulse response \(h_0^{(2)}(n)\) of the two-sided bandpass?

Consider now a different linear-phase system with cosinusoidal attenuation ripples

\begin{equation}\nonumber H^{(3)}\left(e^{j\Omega}\right) = A \left( 1+\alpha \cos\left(2\pi \frac{\Omega}{\Omega_0}\right)\right) e^{-j\Omega n_o}, \qquad \Omega_0=\frac{2\pi}{m},m\in \mathbb{N}. \end{equation}

  1. Find the impulse response \(h_0^{(3)}(n)\), assume that \(m=2\).
  2. The output signal of the above system is filtered by an ideal low-pass filter with cut-off frequency \(\Omega_{c}\). Determine the impulse response \(h_0^{(4)}(n)\) of the overall system.

Amount and difficulty

  • Working time: approx. xx minutes
  • Difficulty: xx


      1. The frequency response \(H^{(1)}(e^{j{\Omega}})\) can be derived by using the given information. It follows that

        \begin{equation*} H^{(1)}(e^{j{\Omega}}) = \begin{cases} A \cdot e^{-j \Omega n_0},& \Omega_m - \Delta \Omega \leq (\Omega - 2 \pi \lambda) \leq \Omega_m - \Delta \Omega \ \ \ \lambda \in \mathbb{Z} \\ 0 ,& \text{ otherwise.} \end{cases} \end{equation*}

      2. The impulse response \(h_0^{(1)}(n)\) can be derived by the inverse Fourier transform of \(H^{(1)}(e^{j{\Omega}})\). In addition one can use a rectangular prototype \(R_{\Delta \Omega} (e^{j{\Omega}})\) where the inverse transform is known.

        \begin{align*} h^{(1)}(n) &= \mathcal{F}^{-1} \left\{ A \cdot R_{\Delta \Omega} (e^{j{\Omega-\Omega_m}}) \cdot e^{-j \Omega n_0} \right\} \\ &= A \cdot \frac{\Delta \Omega}{\pi} \ \text{si}\left(\Delta \Omega(n-n_0)\right) \cdot e^{+j \Omega_m(n-n_0)} \end{align*}

      3. The frequency response \(H^{(2)}(e^{j\Omega})\) of the corresponding two-sided bandpass filter is derived similar to part (a).

        \begin{equation*} H^{(2)}(e^{j{\Omega}}) = A \cdot \left[ R_{\Delta \Omega} (e^{j{\Omega+\Omega_m}}) + R_{\Delta \Omega} (e^{j{\Omega-\Omega_m}}) \right]\cdot e^{-j \Omega n_0} \end{equation*}

      4. The impulse response \(h_0^{(2)}(n)\) of the two-sided bandpass is again calculated by the inverse Fourier transform.

        \begin{align*} h^{(2)}(n) &= \mathcal{F}^{-1} \left\{ H^{(2)}(e^{j{\Omega}}) \right\} \\ &= A \cdot \frac{\Omega_m + \Delta\Omega}{\pi} \ \text{si}\bigg((\Omega_m +\Delta \Omega)(n-n_0)\bigg) \cdots \\ & \ \ \ - A \cdot \frac{\Omega_m - \Delta\Omega}{\pi} \ \text{si}\bigg((\Omega_m -\Delta \Omega)(n-n_0)\bigg) \end{align*}

      5. In order to find the impulse response \(h_0^{(3)}(n)\) the cosine of the frequency response is expanded and the a inverse Fourier transform is applied. The result is given by

        \begin{align*} h^{(3)}(n) &= \mathcal{F}^{-1} \left\{ H^{(3)}(e^{j{\Omega}}) \right\} \\ &= A \ \gamma_0(n-n_0) + A \frac{\alpha}{2} \ \gamma_0(n-n_0+\frac{2\pi}{\Omega_0})+ A \frac{\alpha}{2} \ \gamma_0(n-n_0-\frac{2\pi}{\Omega_0}) \end{align*}

      6. Cascaded filters can be combined to one filter by the multiplication of their two freqeuncy responses. Hence,

        \begin{equation*} H^{(3)}(e^{j{\Omega}}) = A \cdot \left( 1+\alpha \ \cos\left(2\pi\frac{\Omega}{\Omega_0}\right) \right) e^{-j\Omega n_0} \cdot R_{\Omega_c} (e^{j{\Omega}}) \end{equation*}

        and the inverse Fourier transform leads to the impulse response

        \begin{align*} h^{(4)}(n) &= \mathcal{F}^{-1} \left\{ H^{(3)}(e^{j{\Omega}}) \cdot R_{\Omega_c} (e^{j{\Omega}} )\right\} \\ &= h^{(3)}(n) * \frac{\Omega_c}{\pi} \ \text{si} (\Omega_c n) \\ &= A \frac{\Omega_c}{\pi} \ \text{si} \bigg(\Omega_c (n-n_0)\bigg) + A \frac{\alpha}{2} \frac{\Omega_c}{\pi} \ \text{si} \bigg(\Omega_c (n-n_0+m)\bigg) \cdots \\ & \ \ \ + A \frac{\alpha}{2} \frac{\Omega_c}{\pi} \ \text{si} \bigg(\Omega_c (n-n_0-m)\bigg) \end{align*}

Website News

03.12.2017: Added pictures from our Sylt meeting.

01.10.2017: Started with a Tips and Tricks section for KiRAT.

01.10.2017: Talks from Jonas Sauter (Nuance) and Vasudev Kandade Rajan (Harman/Samsung) added.

13.08.2017: New Gas e.V. sections (e.g. pictures or prices) added.

Recent Publications

J. Reermann, P. Durdaut, S. Salzer, T. Demming, A. Piorra, E. Quandt, N. Frey, M. Höft, and G. Schmidt: Evaluation of Magnetoelectric Sensor Systems for Cardiological Applications, Measurement (Elsevier), ISSN 0263-2241,­10.1016/­j.measurement.2017.09.047, 2017

S. Graf, T. Herbig, M. Buck, G. Schmidt: Low-Complexity Pitch Estimation Based on Phase Differences Between Low-Resolution Spectra, Proc. Interspeech, pp. 2316 -2320, 2017


Prof. Dr.-Ing. Gerhard Schmidt


Christian-Albrechts-Universität zu Kiel
Faculty of Engineering
Institute for Electrical Engineering and Information Engineering
Digital Signal Processing and System Theory

Kaiserstr. 2
24143 Kiel, Germany

Recent News

Jugend Forscht

On November 24th, one of our DSS team members, Owe Wisch, took part in the "Jugend forscht Perspektivforum" at the CAU. Thirty young students from the "Jugend forscht" project came to Kiel and participated in three different workshops focusing on career paths in maritime climate protection. Owe Wisch from our chair lead one of the workshops and presented his research topics, beamforming ...

Read more ...