Phlipp Bulling: Rückkopplungsunterdrückung für Innenraumkommunikationssysteme

Pdf-based submission (available freely via the MACAU system), 2018

 

Commission

  • Prof. Dr.-Ing. Gerhard Schmidt
    (first reviewer)
  • Prof. Dr.-Ing. Jürgen Freudenberger
    (second reviewer)
  • Prof. Dr.-Ing. habil. Thomas Meurer
    (examiner)
  • Prof. Dr.-Ing. Michael Höft
    (examiner)
  • Prof. Dr.-Ing. Jeffrey McCord
    (head of the examination board)

 

Abstract

The communication between the passengers inside a car can be difficult due to large background noise levels. It can be improved with so-called in-car communication systems. These systems capture the voice of talkers by means of microphones and play it back via loudspeakers close to the listeners. However, the challenge is the electro-acoustic feedback, which occurs when the microphone not only captures the local speech but also the loudspeaker signal. Without countermeasures, this feedback results in annoying howling sounds.

The problem of the electro-acoustic feedback has not yet been solved for in-car communication systems. Therefore, in this work techniques to suppress the feedback by means of digital signal processing are presented. The main part of this work focuses on adaptive feedback cancellation. Here, the impulse response between loudspeaker and microphone is estimated with an adaptive filter. The difficulty is a strong correlation between loudspeaker and local speech that prevents the adaptive filter from converging towards the desired solution. In order to improve convergence, a novel stepsize control is presented. As signals are not correlated during reverberation, the stepsize control exploits reverberant signal periods to update the filter coefficients. In addition to the adaptive feedback canceler, a postfilter is presented. The task of the postfilter is to suppress the residual feedback that remains after the feedback cancellation, by means of a Wiener-filter. Therefore, the postfilter is controlled depending on the adaptive filter's state of convergence. Finally, two techniques to improve the speech quality are presented. Firstly, an automatic equalizer is described that improves the sound quality. Secondly, it is shown that speech intelligibility can be improved by adding harmonics to a speech signal.

Besides the theoretical investigations, in this work also the practical realization of the algorithms is regarded. Therefore, the algorithms are integrated into a specially developed real-time framework and tested in demonstration cars under realistic conditions during numerous test drives. These test drives show a significant increase of both stability and speech quality compared to existing approaches.

Website News

27.01.2020: Contributions on nerve signal modeling and magnetic muscle measurement by OPMs availaible on IEEE (early access).

27.01.2020: Talk about magnetic shielding by Allard Schnabel (PTB, Berlin) takes place on Feb 13, 2020, 17 h, Room: C-SR 1.

26.01.2020: Some reflections on the year 2019 are online now.

17.12.2019: Journal paper on signal processing for breathing protection masks published.

23.11.2019: GaS price 2019 for Jannek Winter for an excellent bachelor topic on underwater communication systems.

15.11.2019: Our new MIMO-SONAR system (sponsored by DFG) is now ready for "take off".

20.10.2019: We had a very good retreat on the island of Sylt.

07.08.2019: Talk from Juan Rafael Orozco-Arroyave added.

11.07.2019: First free KiRAT version released - a game for Parkinson patients

Contact

Prof. Dr.-Ing. Gerhard Schmidt

E-Mail: gus@tf.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Faculty of Engineering
Institute for Electrical Engineering and Information Engineering
Digital Signal Processing and System Theory

Kaiserstr. 2
24143 Kiel, Germany

How to find us

Recent News

Our SONAR Simulator Supports Underwater Speech Communication Now

Due to the work of Owe Wisch and Alexej Namenas (and of the rest of the SONAR team, of course) our SONAR simulator supports now a real-time mode for testing underwater speech communication. A multitude of "subscribers" can connect to our virtual ocean and send and receive signals. The simulator consists of large (time-variant) convolution engine as well as a realistic noise simulation that ...


Read more ...