Die Zukunft in der Diagnostik des sensorischen Nervensystem: welchen Vorteil bringen moderne neurophysiologische Messverfahren?

PD Dr. med. Philipp Hüllemann, University Hospital Schleswig-Holstein, Department of Neurology

Details

  • Date: 29.04.2019
  • Time: 17:00 h
  • Place: Faculty Club, Building C, Faculty of Engineering, Kaiserstr. 2., 24143 Kiel

Abstract (in German)

Das somatosensorische Nervensystem ist in der Lage verschiedene Empfindungen über unterschiedliche Rezeptoren auf unterschiedlichen Nervenfasern weiterzuleiten, welche im Gehirn dekodiert und interpretiert werden. Entsprechend wird eine Berührung über dick myelinisierte A-Beta-Fasern übermittelt, ein Kaltreiz über dünn myelinisierte Kälte-leitende A-delta-Fasern, Hitzereize über Hitze-sensitive dünn myelinsierte A-delta-Fasern (AMH II), mechanische Reize/-Schmerzreize über mechano-sensitive dünn myelinisierte A-delta-Fasern (AMH I) und Wärmereize über nicht myelinisierte langsam leitende C-fasern. Die zentrale Verarbeitung dieser unterschiedlichen Empfindungen findet in Thalamus, somatosensorischem Kortex, präfrontalem Kortex, cingulärem Kortex, und anderen Teilen des limbischen Systems statt.

In den letzten Jahren wurden unterschiedliche elektrophysiologische Verfahren entwickelt, um jede einzelne Nervenfaserfunktion objektiv zu messen. Einige dieser Verfahren wie beispielsweise die somatosensorisch evozierten Potentiale zur Messung der Berührungsfasern oder die Laser evozierten Potentiale zur Messung der Hitzefasern werden bereits in der klinischen Routinediagnostik angewendet. Andere Verfahren wie beispielsweise die Wärme-, Kälte- oder Pinprick-evozierten Potentiale werden bisher ausschließlich in Forschungslaboren zum Verständnis unterschiedlicher Nervenfaserfunktionen eingesetzt.

Bisher wird in der klinischen Routinediagnostik das sensorische Nervensystem durch Ableitung somatosensorischer Potentiale im EEG gemessen. Dabei werden die Nervenfasern durch Stromimpulse erregt. Das Verfahren zeigt teilweise nicht-reproduzierbare Befunde, zudem können ausschließlich Aussagen über die Integrität der A-beta-Fasern (Berührungsfasern) getroffen werden, welche nur 20% des sensorischen Nervensystems ausmachen. Das schmerzleitende System (A-delta- und C-fasern) kann mit der Routinediagnostik nicht gemessen werden.

Durch neuere technische Entwicklungen können inzwischen alle klinisch relevanten sensorischen Modalitäten wie Vibration, Berührung, Pinprick (spitze Nadelreize), Hitze, Wärme und Kälte durch Stimulus-Synchronisation mit dem EEG in Form evozierter Potentiale abgebildet werden. Somit kann zum einen die Integrität des Hinterstrangsystem und des spinothalamischen Systems, zum anderen die Funktion der dick-, dünn- und unmyelinisierten Nervenfasern objektiv gemessen werden. Das sensorische Profil kann sowohl zur Phänotypisierung für klinische Studien genutzt werden als auch in der klinischen Routine wertvolle diagnostische Hinweise liefern.

Website News

27.01.2020: Contributions on nerve signal modeling and magnetic muscle measurement by OPMs availaible on IEEE (early access).

27.01.2020: Talk about magnetic shielding by Allard Schnabel (PTB, Berlin) takes place on Feb 13, 2020, 17 h, Room: C-SR 1.

26.01.2020: Some reflections on the year 2019 are online now.

17.12.2019: Journal paper on signal processing for breathing protection masks published.

23.11.2019: GaS price 2019 for Jannek Winter for an excellent bachelor topic on underwater communication systems.

15.11.2019: Our new MIMO-SONAR system (sponsored by DFG) is now ready for "take off".

20.10.2019: We had a very good retreat on the island of Sylt.

07.08.2019: Talk from Juan Rafael Orozco-Arroyave added.

11.07.2019: First free KiRAT version released - a game for Parkinson patients

Recent Publications

   

E. Elzenheimer, H. Laufs, W. Schulte-Mattler, G. Schmidt: Magnetic Measurement of Electrically Evoked Muscle Responses with Optically Pumped Magnetometers, IEEE Transactions on Neural Systems and Rehabilitation Engineering, January 2020, doi: 10.1109/TNSRE.2020.2968148

   

M. Brodersen, A. Volmer, G. Schmidt: Signal Enhancement for Communication Systems Used by Firefighter, EURASIP Journal on Audio, Speech, and Music Processing, vol. 21, pp. 1 - 19, 2019

   

E. Elzenheimer, H. Laufs, W. Schulte-Mattler, G. Schmidt: Signal Modeling and Simulation of Temporal Dispersion and Conduction Block in Motor Nerves, IEEE Transactions on Biomedical Engineering, November 2019, doi: 10.1109/TBME.2019.2954592

Contact

Prof. Dr.-Ing. Gerhard Schmidt

E-Mail: gus@tf.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Faculty of Engineering
Institute for Electrical Engineering and Information Engineering
Digital Signal Processing and System Theory

Kaiserstr. 2
24143 Kiel, Germany

How to find us

Recent News

Our SONAR Simulator Supports Underwater Speech Communication Now

Due to the work of Owe Wisch and Alexej Namenas (and of the rest of the SONAR team, of course) our SONAR simulator supports now a real-time mode for testing underwater speech communication. A multitude of "subscribers" can connect to our virtual ocean and send and receive signals. The simulator consists of large (time-variant) convolution engine as well as a realistic noise simulation that ...


Read more ...