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Power spectrum 

Let      be a data set of length    which is divided into     disjoint segments of length  

so that              . The power spectrum           of the signal       is computed as the 

Fourier transform of the autocorrelation function in each window. 

 

Ex: 

If       is a time series of length     = 10,000 data points.     = 1 KHz. 
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Lecture 3 – Quantities measured from time series 
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Power spectrum – Eyes Closed – MEG /EEG 

Lecture 3 – Quantities measured from time series 
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Power spectrum – Eyes Open – MEG /EEG 

Lecture 3 – Quantities measured from time series 
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Power spectrum – MEG /EEG 

Lecture 3 – Quantities measured from time series 

• Issues in recording and analysing very low frequency EEG/MEG activity 

        

• Infra slow (0.01 to 0.1 Hz) signal recording requires genuine DC-coupled amplifiers 

     with high input impedance, high DC stability and a wide dynamic range. 

 

• DC drift which is superimposed on any meaningful event related slow activity can be  

    an issue unless amplifiers are reset every three minutes to ensure that the signal is 

    kept in the optimal range of the amplifier throughout the recording. 

 

• EEG/MEG activity belongs to a broad class of physical signals which arise from a 

     so-called      process. Such signals have a power law relationship of the form: 

       

                                                                                                                               (3.1) 

 

 where          is the power spectral density,     is the frequency and     is the 

      spectral parameter which is usually close to 1 but can lie in the range              and 

      could be greater than 2 in the presence of noise sources. 
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Power spectrum – MEG /EEG 

Lecture 3 – Quantities measured from time series 

• Basics of EEG/MEG 

  

A large cluster of neurons, each generating a  

unit activity, forms a functional network which is  

held together by the neurons synchronisation  

that ensures activity control. 

 

Neurons in turn attract further neurons and the 

oscillation amplitude increases.  

 

Period of oscillation depends on size of the 

neuronal cluster that constitutes a given cycle. 

 

Large neuronal areas are associated with slow, 

high amplitude oscillations whereas a small, 

localised concentration of neurons gives rise to  

High frequency, low amplitude signals. 
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Power spectrum – MEG /EEG 
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Normalisation in frequency domain 

 

 

• The median across all time  

windows was found for every  

frequency point.  

 

• Thus a graph of the median  

PSD value for each frequency band  

was estimated. 

 

• The same procedure will be  

repeated for all the EEG channels. 

 

• Then the overall median of the 

median PSD curves across all the 

conditions which is the normalisation 

curve. 
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Power spectrum – MEG /EEG 

Lecture 3 – Quantities measured from time series 
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Power spectrum – MEG /EEG 

Lecture 3 – Quantities measured from time series 

Normalisation in time domain 

 

• The normalisation can be achieved by passing the signal through a filter that 

cancels the         spectral behaviour to any spectral analysis. 

 

• This inverse filter can be established by modelling the normalisation curve by 

an autoregressive(AR) or a moving average (MA) model and then swapping  

     the coefficients to obtain its inverse. Hence, 

                                                                                                                     (3.2) 

 

   where         is the EEG spectrum with the intrinsic        characteristics,       is 

   the inverse filter contribution and       is the result of their interaction. 

 

• The       curve can be modelled as a finite impulse response (FIR) model such 

that the inverse will be an infinite impulse response (IIR) model. 
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Power spectrum – MEG /EEG 

Lecture 3 – Quantities measured from time series 

• The problem is the lack of control on the FIR coefficients since these are already  

      predetermined  by the shape of the normalisation curve. 

 

• But, if the resultant FIR model is not minimum phase the IIR model stability is a  

    major issue. 

 

• The filter should be a linear phase filter to avoid phase distortion of the input  

     EEG/MEG signal – and a IIR filter will not meet this requirement. 

 

• The other possible approach is that of modelling the normalisation curve as a AR  

     model such that its inverse is an moving average (MA) model and the stability is 

     guaranteed. 

 

• The AR coefficients of an IIR filter are then obtained using the Yule-Walker equations  

     on the absolute value of this time domain signal. 
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Power spectrum – MEG /EEG 

Lecture 3 – Quantities measured from time series 

AR model MA model 



Digital Signal Processing and System Theory| Signal Processing for Medical Applications | Introduction Slide I-12 

Power spectrum – MEG /EEG 

Lecture 3 – Quantities measured from time series 

• Although the earlier approach gives the expected results, it is an involved method 

     which depends on the  normalisation curve in the frequency domain in order to 

     derive the appropriate inverse filter. 

 

Approximating the inverse filter by a differentiator 

 

• The normalisation curve can be approximated to be a      curve, i.e., setting      , and 

     the inverse filter can be obtained by a applying a differentiator. 

 

• The differentiator, with its    frequency response, cancels out the       trend of the EEG 

     power spectrum as described by equation (3.2). 

 

• The designed filted should exihibit a linear phase response and a constant group  

     delay.  

 

• The linear phase response makes it easier to compensate for the phase delay at  

     one particular time instant by sample-shifting the pre-reorded data accordingly. 
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Power spectrum – MEG /EEG 
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The function of differentiator in spectral 

normalisation 

Magnitude and phase response of  

the differentiator 
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Deep Brain Stimulation  

Lecture 3 – Quantities measured from time series 
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Deep Brain Stimulation 

Lecture 3 – Quantities measured from time series 

1v -100 Hz- 180 us 
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Power spectrum – Deep Brain Stimulation - EEG 

Lecture 3 – Quantities measured from time series 
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EMG Pre-processing Procedure 
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Modeling Using Autoregressive Process 

 

Lecture 3 – Quantities measured from time series 

Definition 

 
• An autoregressive process is a type of random process which is often used to model 

    different types of biological systems. 

 

• The process should be capable of modelling both the broad-band EEG signal and  

     narrow-band EMG signal with a particular frequency content. 

 

• The AR process is a stochastic process in which the current value of a variable is a 

     linear function of ist own past values, with a white-noise term added. 

 

• The coefficients of the AR process can be used to describe a particular frequency of 

     oscillation. 
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Modeling Using Autoregressive Process 

 

Lecture 3 – Quantities measured from time series 

• In order to find the AR coefficients for a given signal there are various techniques 

      available like the Burg method, modified covariance method, and Yule walker  

      method. 

 

• Here, the Yule–Walker  equations will be discussed. 

 

• The AR model of a order G can be written as 

  

                                 

         (3.3) 

 

• The process is termed an autoregression in that the sequence          is linear  

     regression on itself with        representing a Gaussian white-noise term with  

     zero mean and unit variance. 

 

• The Yule- Walker equations are derived using a vector-space view point. 
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Modeling Using Autoregressive Process 
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• The inner product is defined as 

 

                                                                                                                 (3.4) 

 

 so that the squared norm of a vector is 

                       

                                                                                                                 (3.5) 

 

The linear-prediction problem is to find the optimal set of coefficients               

such that 

 

        (3.6) 

 

  is the „best“ predictor of        given                              . In anticipation of the 

  result that the linear prediction coefficients are equal to the         parameters,  

      has been used to denote the prediction coefficients. 
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Modeling Using Autoregressive Process 
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• „Best“ means that the mean-square error 

 

                                                                                                                       (3.7) 

 

    is minimized. By the orthogonality principle, the optimal predictor is found by 

    requiring the error vector             to be orthogonal to the subspace spanned 

    by        given                              or  

 

                                                                                                                       (3.8)  

• Inserting equation (3.6) in equation (3.8) and with standard properties of 

inner products, we obtain 

 

                                                                                                                       (3.9) 

 

 

                                                                                                                      (3.10) 
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Modeling Using Autoregressive Process 

 

Lecture 3 – Quantities measured from time series 

• Evaluating the inner product as 

 

                                                                                                                     (3.11) 

 

    results in 

                                                                                                                     (3.12) 

 

• This is the set of Yule-walker equations. The solution of (3.12) provides the  

     optimal set of coefficients to predict       as a linear combination of 

                                  . 
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Modeling Using Autoregressive Process 

 

Lecture 3 – Quantities measured from time series 

• The model system to test the spectral analysis methods are usually designed using 

      the AR of order 2 termed as AR(2). In a physical point of view, an AR(2) process can 

      be interpreted as a stochstically driven, damped, resonant, harmonic oscillator with 

      period and relaxation time determined by the parameters      and      . 1a 2a
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      Why AR2 Process: 

The way of modeling signals using low order autoregressive model (which 

delivers a specific rhythm with a noise), and then introducing time shifts of 

such signal with simultaneous addition of another noise component is 

frequently used in biomedical signal simulation. 

 

The system is defined by: 

 

 

                                                                                                              (3.13)  

 

where      and     is calculated as 

                                                                                                              (3.14) 

                            

                                                                                                              (3.15) 

  

         - output signal;        - noise;     - relaxation time;     - Oscillation period     

 

Modeling Using Autoregressive second order (AR2) Process 
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Modeling Using Autoregressive second order (AR2) Process 

 
For modeling a signal        which resembles a EMG signal and has a peak at 5 Hz  

in the power spectrum. 

 

If the      = 1Khz;     =1.974;     =-0.9802;     = ?;       = ?;  

)(ty

sf 1a 2a T 

Lecture 3 – Quantities measured from time series 


